Added ex075 Quiz 8

This commit is contained in:
Dave Gauer 2021-04-30 21:35:56 -04:00
parent 060e2b9789
commit 4760c62d62
4 changed files with 237 additions and 10 deletions

View file

@ -117,6 +117,8 @@ the learning resource I wished for. There will be tons of room for improvement:
Planned exercises: Planned exercises:
Core Language
* [x] Hello world (main needs to be public) * [x] Hello world (main needs to be public)
* [x] Importing standard library * [x] Importing standard library
* [x] Assignment * [x] Assignment
@ -142,18 +144,24 @@ Planned exercises:
* [x] Labelled blocks and loops * [x] Labelled blocks and loops
* [x] Loops as expressions * [x] Loops as expressions
* [x] Builtins * [x] Builtins
* [ ] Comptime (!) * [x] Inline loops
* [ ] Inline loops * [x] Comptime
* [ ] Anonymous structs * [ ] Anonymous structs
* [ ] Sentinel termination * [ ] Sentinel termination
* [ ] Vectors * [ ] Suspend / Resume
* [ ] Async / Await
* [ ] Nosuspend
* [ ] Async Frames, Suspend Blocks
* [ ] Working with C?
Modules and the Zig Standard Library
* [ ] Imports * [ ] Imports
* [ ] Allocators * [ ] Allocators
* [ ] Arraylist * [ ] Arraylist
* [ ] Filesystem * [ ] Filesystem
* [ ] Readers and Writers * [ ] Readers and Writers
* [ ] Formatting * [ ] Formatting
* [ ] JSON
* [ ] Random Numbers * [ ] Random Numbers
* [ ] Crypto * [ ] Crypto
* [ ] Threads * [ ] Threads
@ -161,12 +169,6 @@ Planned exercises:
* [ ] Stacks * [ ] Stacks
* [ ] Sorting * [ ] Sorting
* [ ] Iterators * [ ] Iterators
* [ ] Formatting specifiers
* [ ] Advanced Formatting
* [ ] Suspend / Resume
* [ ] Async / Await
* [ ] Nosuspend
* [ ] Async Frames, Suspend Blocks
The initial topics for these exercises were unabashedly cribbed from The initial topics for these exercises were unabashedly cribbed from
[ziglearn.org](https://ziglearn.org/). I've since moved things around [ziglearn.org](https://ziglearn.org/). I've since moved things around

View file

@ -370,6 +370,15 @@ const exercises = [_]Exercise{
.main_file = "073_comptime8.zig", .main_file = "073_comptime8.zig",
.output = "My llama value is 25.", .output = "My llama value is 25.",
}, },
.{
.main_file = "074_comptime9.zig",
.output = "My llama value is 2.",
},
.{
.main_file = "075_quiz8.zig",
.output = "Archer's Point--2->Bridge--1->Dogwood Grove--3->Cottage--2->East Pond--1->Fox Pond",
.hint = "Roll up those sleeves. You get to WRITE some code for this one.",
},
}; };
/// Check the zig version to make sure it can compile the examples properly. /// Check the zig version to make sure it can compile the examples properly.

208
exercises/075_quiz8.zig Normal file
View file

@ -0,0 +1,208 @@
//
// Quiz Time!
//
// Let's revisit the Hermit's Map from Quiz 7.
//
// Oh, don't worry, it's not nearly as big without all the
// explanatory comments. And we're only going to change one part
// of it.
//
const print = @import("std").debug.print;
const TripError = error{ Unreachable, EatenByAGrue };
const Place = struct {
name: []const u8,
paths: []const Path = undefined,
};
var a = Place{ .name = "Archer's Point" };
var b = Place{ .name = "Bridge" };
var c = Place{ .name = "Cottage" };
var d = Place{ .name = "Dogwood Grove" };
var e = Place{ .name = "East Pond" };
var f = Place{ .name = "Fox Pond" };
// Remember how we didn't have to declare the numeric type of the
// place_count because it is only used at compile time? That
// probably makes a lot more sense now. :-)
const place_count = 6;
const Path = struct {
from: *const Place,
to: *const Place,
dist: u8,
};
// Okay, so as you may recall, we had to create each Path struct
// by hand and each one took 5 lines of code to define:
//
// Path{
// .from = &a, // from: Archer's Point
// .to = &b, // to: Bridge
// .dist = 2,
// },
//
// Well, armed with the knowledge that we can run code at compile
// time, we can perhaps shorten this a bit with a simple function
// instead.
//
// Please fill in the body of this function!
fn makePath(from: *Place, to: *Place, dist: u8) Path {
}
// Using our new function, these path definitions take up considerably less
// space in our program now!
const a_paths = [_]Path{ makePath(&a, &b, 2) };
const b_paths = [_]Path{ makePath(&b, &a, 2), makePath(&b, &d, 1) };
const c_paths = [_]Path{ makePath(&c, &d, 3), makePath(&c, &e, 2) };
const d_paths = [_]Path{ makePath(&d, &b, 1), makePath(&d, &c, 3), makePath(&d, &f, 7) };
const e_paths = [_]Path{ makePath(&e, &c, 2), makePath(&e, &f, 1) };
const f_paths = [_]Path{ makePath(&f, &d, 7) };
//
// But is it more readable? That could be argued either way.
//
// We've seen that it is possible to parse strings at compile
// time, so the sky's really the limit on how fancy we could get
// with this.
//
// For example, we could create our own "path language" and
// create Paths from that. Something like this, perhaps:
//
// a -> (b[2])
// b -> (a[2] d[1])
// c -> (d[3] e[2])
// ...
//
// Feel free to implement something like that as a SUPER BONUS EXERCISE!
const TripItem = union(enum) {
place: *const Place,
path: *const Path,
fn print(self: TripItem) void {
switch (self) {
.place => |p| print("{s}", .{p.name}),
.path => |p| print("--{}->", .{p.dist}),
}
}
};
const NotebookEntry = struct {
place: *const Place,
coming_from: ?*const Place,
via_path: ?*const Path,
dist_to_reach: u16,
};
const HermitsNotebook = struct {
entries: [place_count]?NotebookEntry = .{null} ** place_count,
next_entry: u8 = 0,
end_of_entries: u8 = 0,
fn getEntry(self: *HermitsNotebook, place: *const Place) ?*NotebookEntry {
for (self.entries) |*entry, i| {
if (i >= self.end_of_entries) break;
if (place == entry.*.?.place) return &entry.*.?;
}
return null;
}
fn checkNote(self: *HermitsNotebook, note: NotebookEntry) void {
var existing_entry = self.getEntry(note.place);
if (existing_entry == null) {
self.entries[self.end_of_entries] = note;
self.end_of_entries += 1;
} else if (note.dist_to_reach < existing_entry.?.dist_to_reach) {
existing_entry.?.* = note;
}
}
fn hasNextEntry(self: *HermitsNotebook) bool {
return self.next_entry < self.end_of_entries;
}
fn getNextEntry(self: *HermitsNotebook) *const NotebookEntry {
defer self.next_entry += 1;
return &self.entries[self.next_entry].?;
}
fn getTripTo(self: *HermitsNotebook, trip: []?TripItem, dest: *Place) TripError!void {
const destination_entry = self.getEntry(dest);
if (destination_entry == null) {
return TripError.Unreachable;
}
var current_entry = destination_entry.?;
var i: u8 = 0;
while (true) : (i += 2) {
trip[i] = TripItem{ .place = current_entry.place };
if (current_entry.coming_from == null) break;
trip[i + 1] = TripItem{ .path = current_entry.via_path.? };
const previous_entry = self.getEntry(current_entry.coming_from.?);
if (previous_entry == null) return TripError.EatenByAGrue;
current_entry = previous_entry.?;
}
}
};
pub fn main() void {
const start = &a; // Archer's Point
const destination = &f; // Fox Pond
// TODO: can we neaten this up????
a.paths = a_paths[0..];
b.paths = b_paths[0..];
c.paths = c_paths[0..];
d.paths = d_paths[0..];
e.paths = e_paths[0..];
f.paths = f_paths[0..];
var notebook = HermitsNotebook{};
var working_note = NotebookEntry{
.place = start,
.coming_from = null,
.via_path = null,
.dist_to_reach = 0,
};
notebook.checkNote(working_note);
while (notebook.hasNextEntry()) {
var place_entry = notebook.getNextEntry();
for (place_entry.place.paths) |*path| {
working_note = NotebookEntry{
.place = path.to,
.coming_from = place_entry.place,
.via_path = path,
.dist_to_reach = place_entry.dist_to_reach + path.dist,
};
notebook.checkNote(working_note);
}
}
var trip = [_]?TripItem{null} ** (place_count * 2);
notebook.getTripTo(trip[0..], destination) catch |err| {
print("Oh no! {}\n", .{err});
return;
};
printTrip(trip[0..]);
}
fn printTrip(trip: []?TripItem) void {
var i: u8 = @intCast(u8, trip.len);
while (i > 0) {
i -= 1;
if (trip[i] == null) continue;
trip[i].?.print();
}
print("\n", .{});
}

View file

@ -0,0 +1,8 @@
52c52,56
<
---
> return Path{
> .from = from,
> .to = to,
> .dist = dist,
> };