mirror of
https://codeberg.org/andyscott/ziglings.git
synced 2024-11-08 11:20:46 -05:00
133 lines
8 KiB
Zig
133 lines
8 KiB
Zig
//
|
|
// Whenever there is a lot to calculate, the question arises as to how
|
|
// tasks can be carried out simultaneously. We have already learned about
|
|
// one possibility, namely asynchronous processes, in Exercises 84-91.
|
|
//
|
|
// However, the computing power of the processor is only distributed to
|
|
// the started tasks, which always reaches its limits when pure computing
|
|
// power is called up.
|
|
//
|
|
// For example, in blockchains based on proof of work, the miners have
|
|
// to find a nonce for a certain character string so that the first m bits
|
|
// in the hash of the character string and the nonce are zeros.
|
|
// As the miner who can solve the task first receives the reward, everyone
|
|
// tries to complete the calculations as quickly as possible.
|
|
//
|
|
// This is where multithreading comes into play, where tasks are actually
|
|
// distributed across several cores of the CPU or GPU, which then really
|
|
// means a multiplication of performance.
|
|
//
|
|
// The following diagram roughly illustrates the difference between the
|
|
// various types of process execution.
|
|
// The 'Overall Time' column is intended to illustrate how the time is
|
|
// affected if, instead of one core as in synchronous and asynchronous
|
|
// processing, a second core now helps to complete the work in multithreading.
|
|
//
|
|
// In the ideal case shown, execution takes only half the time compared
|
|
// to the synchronous single thread. And even asynchronous processing
|
|
// is only slightly faster in comparison.
|
|
//
|
|
//
|
|
// Synchronous Asynchronous
|
|
// Processing Processing Multithreading
|
|
// ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
|
|
// │ Thread 1 │ │ Thread 1 │ │ Thread 1 │ │ Thread 2 │
|
|
// ├──────────┤ ├──────────┤ ├──────────┤ ├──────────┤ Overall Time
|
|
// └──┼┼┼┼┼───┴─┴──┼┼┼┼┼───┴──┴──┼┼┼┼┼───┴─┴──┼┼┼┼┼───┴──┬───────┬───────┬──
|
|
// ├───┤ ├───┤ ├───┤ ├───┤ │ │ │
|
|
// │ T │ │ T │ │ T │ │ T │ │ │ │
|
|
// │ a │ │ a │ │ a │ │ a │ │ │ │
|
|
// │ s │ │ s │ │ s │ │ s │ │ │ │
|
|
// │ k │ │ k │ │ k │ │ k │ │ │ │
|
|
// │ │ │ │ │ │ │ │ │ │ │
|
|
// │ 1 │ │ 1 │ │ 1 │ │ 3 │ │ │ │
|
|
// └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ │ │ │
|
|
// │ │ │ │ 5 Sec │ │
|
|
// ┌────┴───┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ │ │ │
|
|
// │Blocking│ │ T │ │ T │ │ T │ │ │ │
|
|
// └────┬───┘ │ a │ │ a │ │ a │ │ │ │
|
|
// │ │ s │ │ s │ │ s │ │ 8 Sec │
|
|
// ┌─┴─┐ │ k │ │ k │ │ k │ │ │ │
|
|
// │ T │ │ │ │ │ │ │ │ │ │
|
|
// │ a │ │ 2 │ │ 2 │ │ 4 │ │ │ │
|
|
// │ s │ └─┬─┘ ├───┤ ├───┤ │ │ │
|
|
// │ k │ │ │┼┼┼│ │┼┼┼│ ▼ │ 10 Sec
|
|
// │ │ ┌─┴─┐ └───┴────────┴───┴───────── │ │
|
|
// │ 1 │ │ T │ │ │
|
|
// └─┬─┘ │ a │ │ │
|
|
// │ │ s │ │ │
|
|
// ┌─┴─┐ │ k │ │ │
|
|
// │ T │ │ │ │ │
|
|
// │ a │ │ 1 │ │ │
|
|
// │ s │ ├───┤ │ │
|
|
// │ k │ │┼┼┼│ ▼ │
|
|
// │ │ └───┴──────────────────────────────────────────── │
|
|
// │ 2 │ │
|
|
// ├───┤ │
|
|
// │┼┼┼│ ▼
|
|
// └───┴────────────────────────────────────────────────────────────────
|
|
//
|
|
//
|
|
// The diagram was modeled on the one in a blog in which the differences
|
|
// between asynchronous processing and multithreading are explained in detail:
|
|
// https://blog.devgenius.io/multi-threading-vs-asynchronous-programming-what-is-the-difference-3ebfe1179a5
|
|
//
|
|
// Our exercise is essentially about clarifying the approach in Zig and
|
|
// therefore we try to keep it as simple as possible.
|
|
// Multithreading in itself is already difficult enough. ;-)
|
|
//
|
|
const std = @import("std");
|
|
|
|
pub fn main() !void {
|
|
// This is where the preparatory work takes place
|
|
// before the parallel processing begins.
|
|
std.debug.print("Starting work...\n", .{});
|
|
|
|
// These curly brackets are very important, they are necessary
|
|
// to enclose the area where the threads are called.
|
|
// Without these brackets, the program would not wait for the
|
|
// end of the threads and they would continue to run beyond the
|
|
// end of the program.
|
|
{
|
|
// Now we start the first thread, with the number as parameter
|
|
const handle = try std.Thread.spawn(.{}, thread_function, .{1});
|
|
|
|
// Waits for the thread to complete,
|
|
// then deallocates any resources created on `spawn()`.
|
|
defer handle.join();
|
|
|
|
// Second thread
|
|
const handle2 = try std.Thread.spawn(.{}, thread_function, .{-4}); // that can't be right?
|
|
defer handle2.join();
|
|
|
|
// Third thread
|
|
const handle3 = try std.Thread.spawn(.{}, thread_function, .{3});
|
|
defer ??? // <-- something is missing
|
|
|
|
// After the threads have been started,
|
|
// they run in parallel and we can still do some work in between.
|
|
std.time.sleep((1) * std.time.ns_per_s);
|
|
std.debug.print("Some weird stuff, after starting the threads.\n", .{});
|
|
}
|
|
// After we have left the closed area, we wait until
|
|
// the threads have run through, if this has not yet been the case.
|
|
std.debug.print("Zig is cool!\n", .{});
|
|
}
|
|
|
|
// This function is started with every thread that we set up.
|
|
// In our example, we pass the number of the thread as a parameter.
|
|
fn thread_function(num: usize) !void {
|
|
std.debug.print("thread {d}: {s}\n", .{ num, "started." });
|
|
|
|
// This timer simulates the work of the thread.
|
|
const work_time = 2 * ((5 - num % 3) - 2);
|
|
std.time.sleep(work_time * std.time.ns_per_s);
|
|
|
|
std.debug.print("thread {d}: {s}\n", .{ num, "finished." });
|
|
}
|
|
// This is the easiest way to run threads in parallel.
|
|
// In general, however, more management effort is required,
|
|
// e.g. by setting up a pool and allowing the threads to communicate
|
|
// with each other using semaphores.
|
|
//
|
|
// But that's a topic for another exercise.
|