mirror of
https://codeberg.org/andyscott/ziglings.git
synced 2024-11-08 19:20:47 -05:00
43 lines
1.6 KiB
Zig
43 lines
1.6 KiB
Zig
//
|
|
// For loops also let you use the "index" of the iteration, a number
|
|
// that counts up with each iteration. To access the index of iteration,
|
|
// specify a second condition as well as a second capture value.
|
|
//
|
|
// for (items, 0..) |item, index| {
|
|
//
|
|
// // Do something with item and index
|
|
//
|
|
// }
|
|
//
|
|
// You can name "item" and "index" anything you want. "i" is a popular
|
|
// shortening of "index". The item name is often the singular form of
|
|
// the items you're looping through.
|
|
//
|
|
const std = @import("std");
|
|
|
|
pub fn main() void {
|
|
// Let's store the bits of binary number 1101 in
|
|
// 'little-endian' order (least significant byte or bit first):
|
|
const bits = [_]u8{ 1, 0, 1, 1 };
|
|
var value: u32 = 0;
|
|
|
|
// Now we'll convert the binary bits to a number value by adding
|
|
// the value of the place as a power of two for each bit.
|
|
//
|
|
// See if you can figure out the missing pieces:
|
|
for (bits, ???) |bit, ???| {
|
|
// Note that we convert the usize i to a u32 with
|
|
// @intCast(), a builtin function just like @import().
|
|
// We'll learn about these properly in a later exercise.
|
|
const place_value = std.math.pow(u32, 2, @intCast(u32, i));
|
|
value += place_value * bit;
|
|
}
|
|
|
|
std.debug.print("The value of bits '1101': {}.\n", .{value});
|
|
}
|
|
//
|
|
// As mentioned in the previous exercise, 'for' loops have gained
|
|
// additional flexibility since these early exercises were
|
|
// written. As we'll see in later exercises, the above syntax for
|
|
// capturing the index is part of a more general ability. Hang in
|
|
// there!
|